Proses Pengembangan Perangkat Lunak

Di dalam rekayasa perangkat lunak, Metodologi Pengembangan Perangkat Lunak (software development methodology) adalah pemisahan proses pengembangan perangkat lunak ke dalam beberapa fase atau tingkat yang berbeda yang berisi aktifitas-aktifitas dengan perencanaan dan manajemen yang khusus. Metodologi ini sering kali disebut sebagai bagian dari siklus hidup pengembangan sistem (systems development life cycle). 

Beberapa pendekatan pengembangan perangkat lunak telah digunakan sejak awal berkembangan teknologi informasi. Di bawah ini adalah beberapa bentuk model pendekatan pengembangan perangkat lunak:

  1. Waterfall Development
  2. Prototyping
  3. Incremental Development
  4. Iterative and Incremental Development
  5. Spiral Development
  6. Rapid application Development (RAD)
  7. Agile Development

Waterfall Development

640px-Waterfall_model.svg

Model waterfall adalah pendekatan pengembangan yang sekuensial, dimana proses pengembangan dapat dilihat sebagai aliran yang mengalir ke bawah seperti air terjun, yang biasanya melewati beberapa tahap:

  • requirements analysis
  • software design
  • implementation
  • testing
  • integration
  • deployment (atau installation)
  • maintenance

Prototyping

Software prototyping adalah salah satu bentuk pendekatan di dalam pengembangan perangkat lunak, yakni aktifitas pembuatan prototipe atau versi tidak lengkat dari program perangkat lunak yang sedang dikembangkan.

Prinsip dasar dari prototyping adalah:

  • tidak berdiri sediri, tetapi merupakan bagian dari metodologi pengembangan perangkat lunak yang lebih besar
  • berusaha untuk mengurangi risiko yang melekat di project dengan memecah project ke bagian-bagian yang lebih kecil dan menyediakan perubahan yang mudah selama proses pengembangan
  • user dapat diikutsertakan selama proses pengembangan, sehingga dapat meningkatkan penerimaan user terhadap hasil final
  • mock-up berskala kecil dari sistem dikembangkan mengikuti modifikasi yang berulang hingga memenuhi permintaan user
  • dll

sumber https://en.wikipedia.org/wiki/Software_development_process

Business intelligence

Inteligensi Bisnis (IB) adalah sekumpulan teknik dan alat untuk mentransformasi dari data mentah menjadi informasi yang berguna dan bermakna untuk tujuan analisa bisnis Teknologi IB dapat menangani data yang tak terstruktur dalam jumlah yang sangat besar untuk membantu mengidentifikasi, mengembangkan, dan selain itu membuat kesempatan strategi bisnis yang baru. Tujuan dari IB yaitu untuk memudahkan interpretasi dari jumlah data yang besar tersebut. Mengidentifikasi kesempatan yang baru dan mengimplementasikan suatu strategi yang efektif berdasarkan wawasan dapat menyediakan bisnis suatu keuntungan pasar yang kompetitif dan stabilitas jangka panjang.

Inteligensi Bisnis dibangun dari sejumlah komponen termasuk:

  • Alokasi dan agregasi multidimensi
  • Denormalisasi, penandaan dan standarisasi
  • Pelaporan seketika dengan peringatan analitis
  • Sebuah metode antarmuka terhadap sumber data tak terstruktur
  • Perkiraan konsolidasi grup, anggaran dan perpindahan (pegawai)
  • Inferensi statistik dan simulasi probabilitas
  • Optimisasi kunci indikasi performansi
  • Pengontrolan versi dan manajemen proses
  • Manajemen item terbuka

Karakteristik Business Intelligence

Sistem Business Intelligence yang baik mempunyai berbagai karakteristik (Stevans,2008), diantaranya :

  1. Tujuan utama
    Seluruh sistem komputer mempunyai tujuan utama bagi seluruh pengguna sesuai dengan kebutuhan penguna masing-masing.
  2. Ketersediaan data yang relevan
    Masalah ketersediaan data merupakan poin yang paling penting dalam sistem business intelligence yang efektif. Dalam proses pembuat keputusan sering terjadi penyampaian informasi yang tidak lengkap atau bahkan yang tidak sebenarnya. Namun dengan dukungan BI, ketersediaan data yang relevan dapat diatasis ehingga dapat menyuguhkan data-data yang relevan.
  3. Kemampuan
    Dalam hal ini terdapat kemampuan BI yang paling utama yaitu dapat memberikan kemudahan akses untuk informasi terbaru dari bisnis yang berjalan serta peluang yang diproyeksikan, selain itu Bi dapat memenuhi kapabilitas untuk melakukan analisis dan memenuhi permintaan pengguna
  4. Struktur Pendukung
    Dalam BI, sistem pendukung didalamnya tidak hanya terdiri dari hardware dan software, namun juga terdiri dari suatu proses yang dibuat untuk pengambilan keputusan yang lebih baik serta untuk menentukan strategi untuk misi dan tujuan kedepan.

Gudang Data (Data Warehouse)

Seringkali aplikasi IB menggunakan data yang dikumpulkan dari suatu gudang data(GD) atau dari pasar data, dan konsep dari IB dan GD terkadang digabungkan sebagai “IB/GD” (atau “BI/DW“)atau “IBGD“. Suatu gudang data mengandung salinan dari data analitis yang memfalisitasi pendukungan keputusan. Namun, tidak semua layanan gudang data untuk inteligensi bisnis, tidak juga semua aplikasi inteligensi bisnis membutuhkan sebuah gudang data.

Untuk membedakan antara konsep dari inteligensi bisnis dan gudang data, Forrester Research mendefinisikan inteligensi bisnis dengan satu atau dua cara:

  1. Menggunakan definisi luas: “Inteligensi Bisnis adalah suatu kumpulan metodologi, proses, arsitektur, dan teknologi yang mengubah data mentah menjadi informasi yang bermakna dan berguna digunakan untuk mendapatkan strategi yang lebih efektif dan taktis, dan wawasan operasional dan pengambilan-keputusan.” Di bawah definisi ini, inteligensi bisnis juga mengikutkan teknologi seperti integrasi data, kualitas data, penggudangan data, manajemen data-master, analitis konten dan teks, dan banyak lainnya yang terkadang pasar menyatukannya ke segmen “Manajemen Informasi”". Oleh karena itu, Forrester mengacu pada persiapan data dan penggunaan data sebagai dua bagian yang terpisah tapi pada segmen yang berkaitan dekat dari susunan arsitektur inteligensi-bisnis.
  2. Forrester mendefinisikan pasar inteligensi-bisnis yang lebih kecil sebagai, “… mengacu hanya pada lapisan paling atas dari susunan arsitektural IB seperti pelaporan, analitis dan dasbor”

Aplikasi dalam sebuah perusahaan

Inteligensi bisnis bisa diterapkan untuk tujuan bisnis berikut, dengan tujuan untuk mendapatkan nilai bisnis.

  1. Perkiraan – program yang membuat hirarki dari metrik performansi (lihat juga Model Referensi Metrik) dan pengukuran yang menginformasikan pimpinan bisnis tentang progres kearah tujuan bisnis (manajemen proses bisnis).
  2. Analitis – program yang membuat proses kuantitatif supaya sebuah bisnis mencapai keputusan yang optimal dan melakukan penemuan pengetahuan bisnis. Biasanya mengikutkan: penggalian data, penggalian proses, analisis statistik, analitis prediksi, pemodelan prediksi, pemodelan proses bisnis, silsilah data, pemrosesan kejadian kompleks dan analitis preskriptif.
  3. Pelaporan/pelaporan perusahaan – program yang membangun infrastruktur untuk laporan strategis untuk melayani manajemen strategis dari suatu bisnis, bukan pelaporan operasional. Seringkali mengikutkan visualisasi data, sistem informasi eksekutif dan OLAP.
  4. Kolaborasi/platform kolaborasi – program yang membuat wilayah yang berbeda (baik dalam dan luar bisnis) bekerja sama lewat berbagi data dan pertukaran data elektronik.
  5. Manajemen pengetahuan – program yang membuat data perusahaan diarahkan oleh strategi dan praktik untuk mengidentifikasi, membuat, merepresentasikan, menyalurkan, dan mengadopsi wawasan dan pengalaman yang benar-benar berpengetahuan bisnis. Manajemen pengetahuan mengarah ke manajemen pembelajaran dan penyesuaian peraturan.

Sebagai tambahan dari yang di atas, inteligensi bisnis bisa menyediakan pendekatan pro-aktif, seperti fungsi peringatan yang secara langsung mengingatkan pengguna jika suatu kondisi tertentu tercapai. Sebagai contohnya, jika suatu metrik bisnis melampaui batas yang telah ditentukan, metrik tersebut akan diwarnai dalam laporan standar, dan ahli analis bisnis diperingatkan lewat email atau layanan pengawasan lainnya. Proses ini membutuhkan pengaturan data, yang seharusnya ditangani oleh ahlinya.

Data semi-terstruktur dan tak terstruktur

Bisnis menciptakan sejumlah besar informasi berharga dalam bentuk surel, memo, catatan dari pusat panggilan, berita, grup pengguna, percakapan, laporan, halaman situs, presentasi, berkas gambar, berkas video, dan berita dan materi pemasaran. Menurut Merrill Lynch, lebih dari 85% dari informasi bisnis ada dalam bentuk tersebut. Tipe informasi seperti ini disebut data semi terstruktur atau tak terstruktur. Bagaimanapun juga, organisasi sering kali hanya menggunakan dokumen-dokumen itu sekali saja.

Manajemen dari data semi terstruktur dikenal sebagai masalah utama yang tak terpecahkan dalam industri teknologi informasi. Menurut proyeksi dari Gartner (2003), pegawai kantor menghabiskan 30 sampai 40 persen waktunya mencari, menemukan dan menilai data tak terstruktur. IB menggunakan data semi struktur dan tak terstruktur, tapi yang pertama lebih mudah dicari, dan yang terakhir berisi informasi yang sangat besar dibutuhkan untuk analisis dan pembuatan keputusan. Karena kesulitan pada pencarian, penemuan dan penilaian yang baik dari data semi terstruktur dan tak terstruktur, organisasi mungkin tidak menggunakan informasi yang luas tersebut, yang bisa mempengaruhi keputusan tertentu, pekerjaan atau proyek. Hal ini akhirnya mengarah pada buruknya informasi pembuatan keputusan.

Oleh karena itu, saat merancang solusi GD/IB, masalah tertentu yang berhubungan dengan data semi terstruktur dan tak terstruktur haruslah ditangani sebagaimana halnya dengan data terstruktur.

Data tak terstruktur terhadap data semi-terstruktur

Data tak terstruktur dan semi terstruktur memiliki makna yang berbeda bergantung pada konteksnya. Pada konteks sistem database relasional, data tak terstruktur tidak dapat disimpan dalam susunan kolom dan baris yang terprediksi. Salah satu tipe dari data tak terstruktur biasanya disimpan dalam BLOB (binary large object), tipe data penampung-semua yang ada di hampir semua sistem manajemen database relasional. Data tak terstruktur juga bisa mengacu pada pola kolom berulang yang tidak teratur atau acak yang beragam disetiap baris dalam berkas atau dokumen.

Kebanyakan tipe data seperti itu, seperti surel, berkas teks, presentasi, berkas gambar, dan berkas video memenuhi standar yang memberikan kemungkinan adanya metadata. Metadata bisa mengikutkan informasi seperti penulis dan waktu dibuat, dan itu bisa disimpan dalam database relasional. Oleh karena itu, akan lebih akurat berbicara tentang hal ini sebagai dokumen atau data semi-terstruktur, tapi tampaknya belum ada konsensus tertentu yang telah tercapai.

Data tak terstruktur juga bisa menjadi pengetahuan yang pengguna bisnis miliki tentang tren bisnis di masa depan. Peramalan bisnis secara alami menyesuaikan dengan sistem IB karena pengguna bisnis berpikir tentang bisnis mereka dalam makna keseluruhan. Menangkap pengetahuan bisnis yang mungkin hanya ada dalam pikiran pengguna bisnis menyediakan nilai data paling penting untuk sebuah solusi IB yang komplit.

Masalah dengan data semi-terstruktur atau tak-terstruktur

Ada beberapa tantangan dalam mengembangkan IB dengan data semi-terstruktur. Menurut Inmon dan Nesavich, beberapa diantaranya yaitu:

  1. Secara fisik mengakses data tekstual tak-terstruktur – data tak terstruktur disimpan dalam berbagai format.
  2. Terminologi – Di antara peneliti dan analis, ada kebutuhan untuk mengembangkan termilogi yang standar.
  3. Volume data – Sebagaimana yang dinyatakan sebelumnya, sampai 85% dari semua data yang ada adalah semi-terstruktur. Gabungkan hal tersebut dengan kebutuhan untuk analisis semantik dan kata-per-kata.
  4. Pencarian dari data tekstual tak-terstruktur – Pencarian sederhana pada beberapa data, misalnya apel, menghasilkan tautan yang memiliki acuan terhadap istilah yang dicari. Sebagai contoh: “suatu pencarian dilakukan untuk istilah tindak pidana. Dalam pencarian sederhana, istilah tindak pidana digunakan, dan di mana pun ada suatu acuan ke kata tindak pidana, sampai pada dokumen tak terstruktur. Tapi pencarian yang sederhana adalah kasar. Ia tidak menemukan referensi ke kriminal, aksi pembakaran, pembunuhan, penggelapan, kematian karena tabrakan, dan lainnya, walaupun jenis kejahatan ini adalah tipe dari tindak pidana.”

Sumber http://id.wikipedia.org/wiki/Inteligensi_bisnis

Selamat Menulis

Selamat Datang di Dunia Blog, dan selamat menulis…

Pengelola blog kembali mengingatkan akan peraturan pemakaian Blog Universitas Widyatama Bandung adalah sebagai berikut :

  1. Blog ini merupakan milik Universitas Widyatama termasuk didalamnya seluruh sub domain yang digunakan sehingga apa yang terdapat didalam blog ini secara umum akan mengikuti aturan dan kode etik yang ada di Universitas Widyatama Bandung.
  2. Blog ini dibuat dengan menggunakan aplikasi pihak ke tiga (WordPress), dan lisensi plugin plugin didalamnya terikat terhadap developer pembuat plugin tersebut.
  3. Blog ini dapat digunakan oleh Karyawan, Dosen dan Mahasiswa Universitas Widyatama Bandung.
  4. Dilarang melakukan registrasi username atau site/subdomain blog dengan menggunakan kata yang tidak pantas.
  5. Dilarang memasukkan konten dengan unsur SARA, pornografi, pelecehan terhadap seseorang ataupun sebuah institusi.
  6. Dilarang menggunakan blog ini untuk melakukan transaksi elektronik dan pemasangan iklan.
  7. Usahakan sebisa mungkin untuk melakukan embed video atau gambar di bandingkan dengan melakukan upload secara langsung pada server.
  8. Pelanggaran yang dilakukan akan dikenakan sanksi penutupan blog dan atau sanksi yang berlaku pada aturan Universitas Widyatama sesuai dengan jenis pelanggaran yang dilakukan.
  9. Administrator berhak melakukan pembekuan account tanpa pemberitahuan terlebih dahulu jika dianggap ada hal hal yang melanggar peraturan.
  10. Aturan yang ada dapat berubah sewaktu waktu.

Beberapa Link terkait Universitas Widyatama

  1. Fakultas Ekonomi - http://ekonomi.widyatama.ac.id
  2. Fakultas Bisnis & Manajemen – http://manajemen.widyatama.ac.id
  3. Fakultas Teknik – http://teknik.widyatama.ac.id
  4. Fakultas Desain Komunikasi Visual – http://dkv.widyatama.ac.id
  5. Fakultas Bahasa – http://bahasa.widyatama.ac.id

Layanan Digital Universitas Widyatama

  1. Biro Akademik – http://akademik.widyatama.ac.id
  2. Rooster Kuliah – http://rooster.widyatama.ac.id
  3. Portal Mahasiswa – http://mhs.widyatama.ac.id
  4. Portal Dosen – http://dosen.widyatama.ac.id
  5. Digital Library – http://dlib.widyatama.ac.id
  6. eLearning Portal – http://learn.widyatama.ac.id
  7. Dspace Repository – http://repository.widyatama.ac.id
  8. Blog Civitas UTama – http://blog.widyatama.ac.id
  9. Email – http://email.widyatama.ac.id
  10. Penerimaan Mahasiswa Baru – http://pmb.widyatama.ac.id/online

Partner UTama

  1. Putra International College – http://www.iputra.edu.my
  2. Troy University – http://www.troy.edu
  3. Aix Marsielle Universite – http://www.univ-amu.fr
  4. IAU – http://www.iau-aiu.net/content/institutions#Indonesia
  5. TUV – http://www.certipedia.com/quality_marks/9105018530?locale=en
  6. Microsoft – https://mspartner.microsoft.com/en/id/Pages/index.aspx
  7. Cisco – http://www.cisco.com/web/ID/index.html
  8. SAP – http://www.sap.com/asia/index.epx
  9. SEAAIR – http://www.seaair.au.edu

Academic Research Publication

  1. Microsoft Academic  -  http://academic.research.microsoft.com/Organization/19057/universitas-widyatama?query=universitas%20widyatama
  2. Google Scholar – http://scholar.google.com/scholar?hl=en&q=Universitas+Widyatama&btnG=

Info Web Rangking

  1. Webometric – http://www.webometrics.info/en/detalles/widyatama.ac.id
  2. 4ICU – http://www.4icu.org/reviews/10219.html